Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__true) → TRUE
ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
IF(false, X, Y) → ACTIVATE(Y)
F(X) → IF(X, c, n__f(n__true))

The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__true) → TRUE
ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
IF(false, X, Y) → ACTIVATE(Y)
F(X) → IF(X, c, n__f(n__true))

The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
IF(false, X, Y) → ACTIVATE(Y)
F(X) → IF(X, c, n__f(n__true))

The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IF(false, X, Y) → ACTIVATE(Y)
The remaining pairs can at least be oriented weakly.

ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
F(X) → IF(X, c, n__f(n__true))
Used ordering: Polynomial interpretation [25,35]:

POL(c) = 0   
POL(if(x1, x2, x3)) = (4)x_2 + (4)x_3   
POL(f(x1)) = (2)x_1   
POL(n__true) = 0   
POL(n__f(x1)) = (2)x_1   
POL(true) = 0   
POL(false) = 1/2   
POL(activate(x1)) = x_1   
POL(IF(x1, x2, x3)) = (1/4)x_1 + (1/2)x_3   
POL(ACTIVATE(x1)) = (1/4)x_1   
POL(F(x1)) = (1/2)x_1   
The value of delta used in the strict ordering is 1/8.
The following usable rules [17] were oriented:

if(true, X, Y) → X
f(X) → if(X, c, n__f(n__true))
if(false, X, Y) → activate(Y)
activate(n__f(X)) → f(activate(X))
f(X) → n__f(X)
truen__true
activate(n__true) → true
activate(X) → X



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
F(X) → IF(X, c, n__f(n__true))

The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__f(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__f(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(n__f(x1)) = 4 + (4)x_1   
POL(ACTIVATE(x1)) = (2)x_1   
The value of delta used in the strict ordering is 8.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
QDP
                      ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.